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In this paper three approximate numerical approaches are compared, for the title
problem. The "rst method is a variational one, and it is known as an optimized
Rayleigh or Rayleigh}Schmidt method. As such, it belongs to the so-called &&energy
approaches''. On the contrary, the second method solves the di!erential equation
of motion according to a recent quadrature procedure, and is known as the
&&di!erential quadrature method'', or DQM. The last approach reduces the
structure to an holonomic n-degree-of-freedom mechanism, the energies of which
are easily written, and the resulting equations of motion can be deduced by using
the Lagrange equations for discrete systems.
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1. INTRODUCTION

The aim of the paper is to compare the numerical performance of three
approximate methods for the free dynamic analysis of a bar on a modi"ed Winkler
soil subjected to axial vibrations, in the presence of non-classical boundary
conditions.

An exact solution is also obtained, so that the error percentage can be easily
calculated. The "rst approach is based on the so-called optimized Rayleigh
quotient, which was introduced by Rayleigh in 1870, and subsequently
re-discovered by Schmidt and Bert [1, 2]. More recently, closer approximations
have been obtained by introducing two or three unknown multipliers [3], instead
of the original single unknown exponent. The resulting set of non-linear equations
can be solved by means of a symbolic procedure [4].

The second approach is a powerful discretization of the equation of motion, the
so-called di!erential quadrature method (DQM) which was originally proposed by
Bellman and Casti, and subsequently employed in structural mechanics by Bert
0022-460X/00/151257#13 $35.00/0 ( 2000 Academic Press
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et al. [5, 6]. Quite recently, a new technique has been proposed, which allows the
ful"llment of all the boundary conditions in an exact way [7, 8].

According to the last approach, the structure is reduced to a set of rigid bars
connected by means of elastic cells, in which all the elasticity of the bar is supposed
to be lumped. Similarly, the kinetic energy is also lumped at the midpoint of the
rigid bars. In this way, the free vibration frequencies are approximated from below,
whereas the Rayleigh}Schmidt method gives an upper bound.

2. THE STRUCTURAL SYSTEM AND AN EXACT SOLUTION

Consider the bar in Figure 1, with span l, Young's modulus E, cross-sectional
area A, and distributed mass per unit length m. The bar is supposed to be elastically
constrained at both its ends, by means of elastic springs with axial sti!ness equal to
k
A

and k
B

respectively. Finally, the bar is resting on a modi"ed Winkler soil with
modulus of subgrade reaction k

w
. It is perhaps worth noting that the proposed

elastic soil resists axial motion by shearing action, and it should not be confused
with the traditional Winkler soil, in which the motion is opposed by normal action.

If the bar undergoes axial vibrations, then the generic cross-section at the
abscissa x is subjected to the displacement u(x, t) along the axis, and the following
energies arise:

a. Axial strain energy of the bar, given by

¸
s
"

1
2 P

l

0

EA A
Lu
LxB

2
dx. (1)

b. Axial strain energy of the soil, given by

¸
w
"

1
2 P

l

0

k
w
u2 dx. (2)

c. Axial strain energy of the #exible constraints, given by

¸
1
"1

2
k
A
u2(0, t)#1

2
k
B
u2 (l, t). (3)
Figure 1. Bar on a modi"ed Winkler soil with #exible ends.
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d. Kinetic energy, given by

¹"

1
2 P

l

0

mA
Lu
LtB

2
dx. (4)

A solution is sought in the form:

u (x, t)"; (x) e*ut, (5)

where i"J!1 and u is the free circular frequency of the motion. From a trivial
application of the Hamilton principle one gets the di!erential equation of motion

EA
L2;
Lx2

#mu2;(x)!k
w
;(x)"0 (6)

and the boundary conditions

EA
L;
Lx

(0)"k
A
;(0), EA

L;
Lx

(l)"!k
B
;(l). (7)

It is often convenient to introduce the quantity m"x/l, with 0)m)1 so that the
equation of motion becomes

L2; (m)
Lm2

!(K
w
!X2); (m)"0 (8)

with

X2"
mu2l2
EA

, K
w
"

k
w
l2

EA
. (9)

Correspondingly, the boundary conditions become

C
A

L;
Lm

(0)"; (0), !C
B

L;
Lm

(1)"; (1), (10)

where the following non-dimensional #exibilities have been introduced:

C
A
"

EA
k
A
l
, C

B
"

EA
k
B
l
. (11)

The di!erential equation of motion can be solved by assuming that

; (m)"ejm (12)
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and the following polynomial is easily de"ned:

j2!(K
w
!X2)"0 (13)

with roots

j
1,2

"$JK
w
!X2 . (14)

If K
w
'X2, then the roots are real, and the solution can be written as

; (m)"A
1
cosh(j

1
m)#B

1
sinh(j

1
m). (15)

If K
w
(X2, then the roots are purely imaginary, and the solution is given by

; (m)"A
2
cos(a

1
m)#B

2
sin(a

1
m) (16)

with a
1
"JX2!K

w
.

Finally, the boundary conditions can be imposed, and the constants A
i

and
B
i
can be found. It will be

j
1
(C

A
#C

B
) cosh j

1
#(1#C

A
C
B
j2
1
) sinh j

1
"0 (17)

for K
w
'X2, and

a
1
(C

A
#C

B
) cos a

1
#(1!C

A
C
B
a2
1
) sin a

1
"0 (18)

for K
w
(X2. The exceptional case K

w
"X2 is not treated here for the sake of

brevity.

3. THE RAYLEIGH}SCHMIDT METHOD

The strain energy and the kinetic energy can be re-written in terms of the
non-dimensional quantity m, and the identity ¹

max
"¸

max
can be imposed, where

¹
max

is the maximum kinetic energy of the system, and ¸
max

is its maximum
potential energy. It will be

X2"
:1
0
(L;/Lm)2 dm#:1

0
K

w
;2 dm#k

A
;2(0)#k

B
;2(1)

:1
0
;2 dm

. (19)

In order to obtain an approximate X1 2 value, it is possible to insert in the previous
equation an approximate displacement function ;M (m), which, strictly speaking, has
to satisfy no boundary condition at all. Nevertheless, it is convenient to enforce
both the dynamic conditions at the ends. More precisely, we start from
a polynomial function

f (m)"a
0
#a

1
m#m2. (20)
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Then the boundary conditions are imposed:

C
A

Lf
Lm

(0)"f (0), !C
B

Lf
Lm

(1)"f (1) (21)

and the unknown coe$cients a
0

and a
1

are calculated. Finally, the approximate
displacement function is given by

;M (m)"f (m) A1#
n
+
i/1

t
i
f i (m)B , (22)

where n is the number of unknown multipliers.
In this way, an approximate frequency parameter XM 2 is obtained as a function of

the multipliers t
i
, and the properties of the Rayleigh quotient allow one to say that

the best approximation is given by solving the equations

LXM 2
Lt

i

"0, i"1,2, n. (23)

4. THE DIFFERENTIAL QUADRATURE METHOD (DQM)

It is now convenient to shift the analysis from the natural domain [0, 1] to the
Gaussian domain [!1, 1], by using the relationship

g (x)"2 A
x
l B!1, (24)

so that the di!erential equation of motion becomes

4
L2; (g)

Lg2
#(X2!K

w
);(g)"0 (25)

together with the boundary conditions

2C
A

L;
Lg

(!1)"; (!1), !2C
B

L;
Lg

(1)"; (1). (26)

The Gaussian domain is divided into n subdomains, de"ned by the (n#1) division
points g

i
, and the following unknowns:

dT"M;
1
,;@

1
, ;

2
,2 ,;

n
,;

n`1
,;@

n`1
N (27)

can be conveniently assigned, where the prime indicates di!erentiation with respect
to g.



1262 M. A. DE ROSA AND M. J. MAURIZI
According to the DQM, the displacement function;(g) can be approximated as

; (g)"bC"

n`3
+
i/1

b
i
C

i
, (28)

where b is a row vector of monomials

b"[1, g, g2 ,2 , gn`2] (29)

and C is a column vector of the Lagrangian co-ordinates. From equation (28) one
can deduce

;@(g)"b@C (30)

and, therefore,

d"G
b
1

b@
1

b
2
F

b
n`1

b@
n`1

H C,N
0
C. (31)

The weighting coe$cients of the "rst two derivatives can be deduced, using the
approach as in reference [6], and it will be

A"N@
0
N~1

0
, B"AA. (32)

The equation of motion (25) becomes

Ld"X2d (33)

with

¸
ij
"!4B

ij
#K

w
d
ij
. (34)

d
ij

is the Kronecker operator, whereas L is the discretized version of the di!erential
operator

¸"!

L2

Lg2
#K

w
. (35)
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The boundary conditions can be imposed by writing

A
1 0 0 0 2 !2C

A
0

0 1 0 0 2 0 2C
B

¸
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¸
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2 ¸
4,2

¸
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F F F F F F F
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¸
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¸
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¸
2,1

¸
2,n`2

¸
2,3

¸
2,4
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2,2

¸
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¸
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¸
n`3,n`2

¸
n`3,3

¸
n`3,4

2 ¸
n`3,2

¸
n`3,n`3
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;

1
;

n`1
;

2
;

3
F

;
n
;@

1
;@

n`1

B
"X2A

0

0

;
2
;

3
F

;
n
;@

1
;@

n`1

B . (36)

More conveniently, this equation can be partitioned as follows:

A
I

L
ba

L
ab

L
bb
B A

U
c

U B"X2A
O
UB , (37)

where

U
c
"A

;
1

;
n`1
B , U"A

;
2
;

3
F

;
n
;@

1
;@

n`1
B . (38)

Finally, equation (37) can be transformed into a standard eigenvalue problem as
follows:

(L
bb
!L

ba
L
ab

)U"X2U. (39)

Two di!erent types of interpolations are commonly used, i.e., the Lagrangian
approach, in which b

i
"gi~1 and the Chebyshev interpolation scheme, in which
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b
i
"¹

i~1
(g). In the "rst case, the sampling points are uniformly distributed along

the interval

g
i
"[2(i!1)!n]/n, i"1,2 , n#1, (40)

whereas in the second case the points will be located according to the following law:

g
i
"!cos(n (i!1)/n), i"1,2 , n#1. (41)

Nevertheless, the numerical examples will be reported for the "rst interpolation
approach, because the use of Chebyshev polynomials lead to the same results.

5. THE CELL METHOD

According to this method, the bar will be divided into n rigid bars, connected
together by means of (n#1) elastic cells.

If each rigid bar has length l
t
"l/n, then the axial #exibility of the generic cell is

given by

c
i
"

l
t

EA
, c

1
"c

n`1
"

l
t

2EA
, i"2,2 , n (42)

and its corresponding sti!ness is equal to

k
i
"

EA
l
t

, k
1
"k

n`1
"

EA
2l

t

, i"2,2 , n. (43)

The boundary #exibilities c
A

and c
B
should be added to c

1
and c

n`1
, respectively, so

obtaining the "nal values of the #exibilities at the bar ends

c
1
"

2EAc
A
#l

t
2EA

, c
n`1

"

2EAc
B
#l

t
2EA

. (44)

The n axial displacements of the n rigid bars can be assumed as Lagrangian
co-ordinates, and consequently the strain energy of the bar can be expressed as

¸"

1
2

n`1
+
i/2

k
i
(;

i
!;

i~1
)2. (45)

It follows that the global sti!ness matrix will be a tridiagonal (n]n) matrix, with
diagonal entries given by

Kc
ii
"k

i
#k

i`1
, i"1,2 , n (46)
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and o!-diagonal terms given by

Kc
i, i`1

"Kc
i`1, i

"!k
i`1

, i"1,2, n!1. (47)

The strain energy of the modi"ed Winkler soil is given by

¸
w
"

1
2

n
+
i/1
P

lt

0

k
w
;2

i
dx"

1
2

l
t
k
w

n
+
i/1

;2
i
. (48)

The resulting soil sti!ness matrix is diagonal, with entries given by

Kw
ii
"k

w
l
t
, i"1,2 , n. (49)

Finally, the global sti!ness matrix K is given by the sum of Kc and Kw.
The distributed mass is supposed to be lumped at the midpoint of the rigid bars,

so that the kinetic energy is given by

¹"

1
2

n
+
i/1

oAl
t
;Q 2. (50)

The resulting kinetic energy is again a diagonal matrix with diagonal entries

M
ii
"oAl

t
, i"1,2 , n. (51)

The frequencies u2
i

of the system can be obtained by solving the generalized
eigenvalue problem

[!u2M#K]U (52)

where U is the n-dimensional vector of the Lagrangian co-ordinates.
TABLE 1

Free vibration frequencies of cantilever bars for various values of the non-dimensional
=inkler soil coe.cient

K
w

Exact R.S. DQM CDM

0 1.570796 1)570796 1)570879 1)570780
1 1)862096 1)862095 1)862106 1)862082

10 3)530921 3)530920 3)530952 3)530913
50 7)243438 7)243438 7)243441 7)243434
102 10)122618 10)122618 10)122620 10)122616
103 31)661766 31)661766 31)661766 31)661765
104 100)012336 100)012336 100)012336 100)012336



TABLE 2

Free vibration frequencies of cantilever bars for various values of the non-dimensional
axial -exibilities at the ends, with K

w
"10

C
A
!C

B
Exact R.S. DQM CDM

0 4)457533 4)457533 4)457550 4)457493
0)1 4)111530 4)111530 4)111837 4)111502
1 3)421557 3)421557 3)421566 3)421554

10 3)193229 3)193229 3)193229 3)193229
102 3)165433 3)165433 3)165433 3)165433
103 3)162594 3)162594 3)162594 3)162594
104 3)162309 3)162309 3)162309 3)162309
105 3)162281 3)162281 3)162281 3)162281
106 3)162278 3)162278 3)162278 3)162278

TABLE 3

First three free vibration frequencies of propped cantilever bars for various values of
the right -exibility, in the absence of =inkler soil

C
B

Exact DQM R.S. CDM

3)141592 3)141592 3)141592 3)141535
1 6)283185 6)283184 6)282726

9)424778 9)424776 9)423228

2)028760 2)028760 2)031290 2)028737
0 4)913180 4)913180 4)912944

7)978665 7)978660 7)977696

1)688682 1)688683 1)688854 1)688673
5 4)754430 4)754429 4)754228

7)879359 7)879359 7)878826

1)631994 1)631995 1)630344 1)631986
10 4)733512 4)733508 4)733314

7)866693 7)866696 7)865788

1)577137 1)577137 1)577137 1)577129
102 4)714510 4)714446 4)714316

7)855255 7)855253 7)854357

1)571433 1)571432 1)571432 1)571425
103 4)712601 4)712600 4)712407

7)854190 7)854107 7)853212

1)570860 1)570860 1)570859 1)570853
104 4)712410 4)712409 4)712216

7)853994 7)853993 7)853097

1)570796 1)570790 1)570797 1)570790
106 4)712389 4)712388 4)712196

7)853982 7)853980 7)853084

1266 M. A. DE ROSA AND M. J. MAURIZI
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6. NUMERICAL EXAMPLES

As a "rst example, consider a bar "xed at the left end and free at the right end, so
that C

A
"0 and C

B
PR. In Table 1 the "rst non-dimensional frequency

X2"
oAu2l2

EA
(53)

is reported for various values of the soil parameters K
w
. The "rst column gives the

exact frequency values, for reference purpose, in the second column the
approximate frequencies are given, as obtained by using a Rayleigh}Schimdt
approach with a single multiplier, in the third column the DQM values are
reported, by using a Lagrangian interpolation, and "nally, in the last column, the
frequencies obtained by means of CDM are given, by dividing the bar into 100 rigid
bars.
TABLE 4

First three free vibration frequencies of propped cantilever bars for various values of
the right -exibility, with K

w
"10

C
B

Exact DQM R.S. CDM

4)457533 4)457533 4)457533 4)457493
0 7)034090 7)034088 7)033679

9)941145 9)941147 9)939679

3.757108 3)757113 3)758475 3)757097
1 5)842889 5)842884 5)842689

8)582488 8)582488 8)581587

3)584920 3)584913 3)585000 3)584915
5 5)710044 5)710044 5)709876

8)490247 8)490247 8)489401

3)558568 3)558568 3)558586 3)558564
10 5)692638 5)692638 5)692474

8)478494 8)478494 8)447654

3)533746 3)533746 3)533746 3)533743
102 5)676848 5)676848 5)676687

8)467882 8)467882 8)467049

3)531204 3)531204 3)531204 3)531201
103 5)675263 5)675263 5)675102

8)466819 8)466819 8)465987

3)530949 3)530949 3)530949 3)530946
104 5)675104 5)675104 5)674943

8)466713 8)466713 8)465881

3)530921 3)530921 3)530921 3)530918
106 5)675087 5)675087 5)674926

8)466701 8)466701 8)465869
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As can be seen, the agreement is everywhere quite good.
In Table 2 the soil parameter is equal to K

w
"10, and the boundary #exibilities

C
A

and C
B

are allowed to vary between the values 0 ( ,xed ends) and 106 ( free ends).
The results are given in Table 1, but now the bar has been divided into 150 bars.
Tables 3}5 are given for a "xed left end, and for three di!erent values of the soil
parameter: K

w
"0, 10 and 1000. In each case, the right #exibility is allowed to vary

between 0 and 106. The "rst three non-dimensional frequencies are reported, as
given by the DQM and the CDM, whereas for the Rayleigh}Schmidt only the
fundamental frequency is given, as obtained by using two unknown multipliers.

In all the given examples, the numerical discrepancies among the various
approximate approaches are small enough to be considered negligible.
TABLE 5

First three free vibration frequencies of propped cantilever bars for various values of
the right -exibility, with K

w
"1000

C
B

Exact DQM R.S. CDM

31)778445 31)778445 31)778445 31)778440
0 32)240943 32)240943 32)240854

32)997370 32)997370 32)996927

31)687787 31)687787 31)687949 31)687786
1 32)002177 32)002177 32)002141

32)613787 32)613787 32)613550

31)667833 31)667833 31)667842 31)667833
5 31)978189 31)978189 31)978159

32)588341 32)585996 32)589414

31)664861 31)664861 31)664863 31)664860
10 31)975086 31)975086 31)975057

32)586575 32)586575 32)583564

31)662081 31)662081 31)662081 31)662080
102 31)972279 31)972279 31)972250

32)583815 32)583815 32)583599

31)661797 31)661797 31)661797 31)661797
103 31)971997 31)971997 31)971969

32)583539 32)583539 32)583323

31)661769 31)661769 31)661769 31)661768
104 31)971969 31)971969 31)971940

32)583511 32)583511 32)583295

31)661766 31)661766 31)661766 31)661765
106 31)971966 31)971966 31)971937

32)583508 32)583508 32)583292
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7. CONCLUSIONS

Three di!erent approximate approaches have been employed for the axial
vibration analysis of bars on a modi"ed Winkler soil in the presence of
non-classical boundary conditions. The numerical results show that a very narrow
lower}upper bound to the true results can be obtained.

All the results have been obtained and checked by means of the symbolic
software Mathematica.

REFERENCES

1. R. SCHMIDT 1981 Industrial Mathematics 31, 37}46. A variant of the Rayleigh}Ritz
method.

2. C. BERT 1984 Industrial Mathematics 34, 65}67. Use of symmetry in applying the
Rayleigh}Schmidt method to static and free vibration problems.

3. M. A. DE ROSA and C. FRANCIOSI 1996 Journal of Sound and <ibration 191, 795}808. The
optimized Rayleigh method and Mathematica in vibration and buckling problems.

4. S. WOLFRAM 1991 Mathematica, A System for Doing Mathematics by Computer, <ersion
2)2. Reading, MA: Addison-Wesley Publishing Company.

5. C. BERT and M. MALIK 1996 Applied Mechanics Reviews 49, 1}28. Di!erential
quadrature method in computational mechanics: a review.

6. W. CHEN, A. G. STRIZ and C. BERT 1997 International Journal for Numerical Methods in
Engineering 40, 1941}1956. A new approach to the di!erential quadrature method for
fourth-order equations.

7. M. A. DE ROSA and C. FRANCIOSI 1996 Journal of Sound and <ibration 212, 743}748.
Non-classical boundary conditions and DQM.

8. M. A. DE ROSA and C. FRANCIOSI 1998 Mechanics Research Communication 25, 279}286.
On natural boundary conditions and DQM.


	1. INTRODUCTION
	2. THE STRUCTURAL SYSTEM AND AN EXACT SOLUTION
	Figure 1

	3. THE RAYLEIGH}SCHMIDT METHOD
	4. THE DIFFERENTIAL QUADRATURE METHOD (DQM)
	5. THE CELL METHOD
	TABLE 1
	TABLE 2
	TABLE 3

	6. NUMERICAL EXAMPLES
	TABLE 4
	TABLE 5

	7. CONCLUSIONS
	REFERENCES

